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Abstract: X-ray microspectroscopic techniques are essential for studying morphological and10

chemical changes in materials, providing high-resolution structural and spectroscopic information.11

However, its practical data analysis for reliably retrieving the chemical states remains a major12

obstacle to accelerating the fundamental understanding of materials in many research fields. In13

this work, we propose a novel data formulation model for X-ray microspectroscopy and develop14

a dedicated unmixing framework to solve this problem, which is robust to noise and spectral15

variability. Moreover, this framework is not limited to analyzing two-state material chemistry,16

making it an effective alternative to conventional and widely used methods. In addition, an17

alternative directional multiplier method with explicit or implicit regularization is applied to18

obtain the solution efficiently. Our framework can accurately identify and characterize chemical19

states in complex and heterogeneous samples, even under challenging conditions such as low20

signal-to-noise ratios and overlapping spectral features. By testing six simulated datasets, our21

method improves the existing methods by up to 151.84% and 136.33% in terms of the peak22

signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) for the chemical phase23

map. Extensive experimental results on simulated and real datasets demonstrate its effectiveness24

and reliability.25
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1. Introduction27

X-ray absorption spectroscopy (XAS) is a scientific technique that utilizes X-rays to investigate28

materials’ electronic and structural properties. However, the spatial resolution of XAS is typically29

limited to the micron or sub-micron scale, which poses a challenge when studying materials30

with complex or heterogeneous structures. In recent years, spectroscopic full-field transmission31

X-ray microscopy (TXM) has emerged as a novel tool for nanoscale chemical imaging, with32

great potential in various multidisciplinary fields [1, 2]. By imaging at energy points across33

the absorption edge of the element of interest, TXM offers both high spatial resolution and34

chemical-specific information. Sub-50-nm resolution X-ray absorption near-edge structure35

(XANES) spectroscopy is routinely achieved with TXM-XANES, mainly operating in the hard36

X-ray regime (5 to 12 keV) [3–5]. Its application areas include materials science, physics,37

chemistry, and biology. For instance, it can be used for chemical mapping in battery studies [6,7]38

and mesoscale degradation [8].39

In TXM-XANES, the intensity change of each pixel is scrutinized to generate XANES spectra40

that are matched against reference compounds. Some common techniques, including the edge-5041

or linear combination fitting (LCF) [1], are used to fit the spectra, then a two-dimensional42

colormap is constructed to display the chemical phase combination of each pixel. The XANES43

Edge-50 point (energy at 0.5 spectrum position), which measures the absorption spectra of44

materials within the energy range of 5 keV to 12 keV, is a widely-used method defining the45
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absorption edge energy. The utilization of the Edge-50 XANES technique has been progressively46

examined for characterizing the chemical composition and structure of environmental material [9].47

On the other hand, [10] proposed using LCF to determine the phase composition of a chemical48

sample from normalized XANES spectra. The XANES image at each pixel represents a spectrum49

at a particular location, which can be fitted with reference spectra to produce spatially resolved50

chemical state information. This technique significantly simplifies the processing and analysis51

of XANES spectra using LCF. These traditional methods have been extensively used in the52

literature [11–14]. Notably, Xiao et al. [15] present a workflow software integrating a few53

valuable tools for transmission X-ray microscopy data analysis, providing rich image visualization54

and processing routines.55

Although traditional methods are widely applicable, they rely on high-quality TXM-XANES56

images. A relatively slow acquisition process is needed to achieve sufficient energy resolution,57

recording hundreds or thousands of energy points and a long exposure time. Fast TXM-XANES58

imaging is crucial for reliably solving morphological chemical phase transitions, as in 3D battery59

material research. To increase the speed of TXM-XANES imaging, energy points are reduced,60

or X-ray exposure time is minimized, which is more favorable for radiation-sensitive samples,61

similar to low-dose medical X-ray imaging applications. However, excessively short exposure62

times can result in measurements with strong noise [16]. Furthermore, when acquiring XANES63

data, there are many variations in the X-ray exposure conditions and inherent material properties,64

contributing to the variability of XANES spectra [17]. In the face of strong noise and spectral65

variability, the Edge-50 and LCT methods fail to obtain a reasonable interpretation of elemental66

and chemical information. Despite efforts to optimize microscope hardware, the physical67

limitations of the TXM-XANES imaging system remain challenging to overcome. To address68

this obstacle, computational algorithm development is inevitable for improving downstream69

analysis through fitting results.70

Spectral unmixing methods [18] have numerous applications in imaging science, including71

remote sensing [19–21], optical microscopy [22], and X-ray imaging [23–25]. The unmixing72

technique aims to decompose a spectrum of mixed pixels into a set of distinct spectral signatures,73

known as endmembers, along with their corresponding fractional abundances [26, 27]. By74

utilizing spectral unmixing in X-ray microspectroscopy, the chemical states of materials can be75

directly obtained, bypassing the fitting process. Various regularizations have been developed in76

spectral unmixing methods to utilize the prior information on the abundance map against noise.77

In addition, in the face of spectral variability, many model formulations have been proposed78

in the unmixing problems [28–32]. The principle underlying the LCF method is essentially79

spectral unmixing [18], whereby the mixture is analyzed by determining the contribution of the80

reference spectra. However, it is sensitive to noise and limited in handling problems with spectral81

variability.82

The TXM-XANES unmixing task involving spectral variability can be formulated as an83

optimization model. After extracting the scale factors from spectral variability in each pixel, the84

chemical map corresponding to different chemical states can be seen as a sequence of images.85

This allows us to utilize prior information and enhance the robustness of our model. In this study,86

we employ two regularization techniques to achieve this goal. Firstly, the explicit regularizer87

is applied to the reconstructed image to incorporate spatial and spectral information through88

pixel connections in the unmixing process [33, 34], an explicit regularizer pertains to prior89

information that is pre-defined in model-based methods. On the other hand, the Plug and Play90

(PnP) technique utilizes state-of-the-art denoisers to tackle linear inverse problems in various91

hyperspectral image processing tasks [35–41]. In contrast to traditional model-based methods,92

which require explicit and manually designed image priors, PnP can implicitly establish the prior93

information through the use of denoisers. Therefore, in the subsequent sections, we refer to PnP94

as an implicit regularizer. The main contributions of this paper are summarized as follows:95
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Fig. 1. Framework of the proposed model for material chemical states retrieval in the
form of unmixing for X-ray microspectroscopy. The normalized XANES spectra from
each pixel are unmixed to create a chemical phase map X, which also considers the
image’s scaling factor.

• We present a novel and robust framework for X-ray TXM-XANES imaging, which96

incorporates various realistic factors that affect the spectra, such as noise and spectral97

variability.98

• Our proposed framework is evaluated extensively using both quantitative and qualitative99

methods on synthetic and experimental datasets. The results indicate that our proposed100

methods surpass the state-of-the-art. Our framework with an implicit regularization101

achieves the best performance.102

The rest of the paper is organized as follows. In Section 2, we propose a novel data formulation103

model for the material chemical states retrieval in X-ray microspectroscopy and the corresponding104

algorithms to solve it. Section 3 presents the experimental results and subsequent discussions.105

Finally, Section 4 provides a summary and future perspectives.106

2. Proposed Robust Unmixing Framework107

2.1. Model Formulation108

Here the observed XANES image is represented by Y = [y1, y2, . . . , y𝑁 ] ∈ R𝑇×𝑁 , where each109

column vector is obtained by lexicographically ordering the TXM image with size 𝑁 = 𝑀 × 𝐾 ,110

and 𝑇 is the number of energy points. The LCF model generates the noisy measurements Y from111

the chemical phase map M = [m1,m2, . . . ,m𝑛] ∈ R𝐿×𝑁 , pixel-wisely.112

y𝑘 = Am𝑘 + r𝑘 , 𝑘 = 1, . . . , 𝑁, (1)

where A ∈ R𝑇×𝐿 is the dictionary, representing spectra of the reference materials in the XANES113

images, 𝐿 is the number of materials, and the noise r𝑘 is assumed to follow Gaussian distribution.114

Given A ∈ R𝑇×𝐿 , LCF is to solve a least square problem. However, this is an inverse115

problem which is sensitive to the noise. In addition, the chemical phase map m𝑘 is a vector with116

non-negative values but does not sum up to one. This is because of the illumination conditions117

and uncertainty in the chemical process. As a result, some critical prior information contained in118

m𝑘 as an image is lost, and it becomes difficult to apply certain regularization techniques.119

Here, we introduce the scaling factor 𝑠𝑘 for this pixel-wise spectral variability such that this
process can be effectively modeled by approximating the chemical phase map of each pixel with



the scaled version of the reference spectra. We split the m𝑘 into two variables

m𝑘 = 𝑠𝑘x𝑘 ,

where 𝑠𝑘 is a scalar in the 𝑘-the pixel and x𝑘 is the normalized chemical phase map which has120

the sum-to-one property. Then the forward model (1) can be rewritten as121

y𝑘 = 𝑠𝑘Ax𝑘 + r𝑘 , 𝑘 = 1, . . . , 𝑁, (2)

In other words, we get the matrix form of (2) as122

Y = AXdiag(s) + R, (3)

where diag(s) represents a diagonal matrix with its diagonal values s = [𝑠1, 𝑠2, . . . , 𝑠𝑁 ]𝑇 and123

𝑠𝑖 ≥ 0,∀𝑖 ∈ 1, . . . , 𝑁 . The noise term is R = [r1, r2, . . . , r𝑁 ] . Fig. 1 gives the macro diagram124

of spectral unmixing for the XANES imaging. With (3), we get an optimization problem:125

min
X,s

1
2
∥Y − AXdiag(s)∥2𝐹

s.t. X ≥ 0, s ≥ 0, 1𝑇X = 1,
(4)

where ∥ · ∥𝐹 is the Frobenius norm, i.e., ∥Z∥𝐹 =

√︃∑
𝑧2
𝑖 𝑗

for any Z. Note that combining X126

and s into a nonnegative least squares problem would lose some prior information on X itself,127

especially when X and s are independent. In the following, we will utilize the prior information128

and propose a robust optimization framework under a low exposure time measurement.129

2.2. Explicit and Implicit Regularizations130

Regularization is a widely-used technique in image processing to promote sparsity in terms of131

certain transformations on the image [42, 43]. Here the normalized chemical phase map can be132

regarded as a group of images and has a piece-wise spatial correlation. Hence, we first adapt133

a regularization into (4) in a unified framework, and the proposed model can be expressed as134

follows:135

min
X,s

1
2
∥Y − AXdiag(s)∥2𝐹 + _

𝐿∑︁
𝑗=1

Φ(x 𝑗 ) + 𝐼Ω1 (X) + 𝐼Ω2 (s), (5)

where Φ(x) represents a regularization term enforcing prior knowledge of x. The regularization136

parameter is represented as _. Here x 𝑗 is the 𝑗-th row in the chemical map X, and 𝐼Ω is the137

indicator function for the nonnegative value, i.e.,138

𝐼Ω (x) =
{

0 x ∈ Ω,
+∞ otherwise.

(6)

In addition, Ω1 = {X|X ≥ 0 and 1𝑇X = 1} and Ω2 = {s|s ≥ 0}. Since the sparsity emerges in139

terms of certain transformations, we define Φ(x) = 𝜙1 ◦ 𝜙2 (x) := 𝜙1 (𝜙2 (x)) where 𝜙1 is the140

sparse term and 𝜙2 is certain transformations. After splitting the variables, the problem in (6)141

with auxiliary variables can be expressed as follows:142

min
X,s

1
2
∥Y − AM∥2𝐹 + _

𝐿∑︁
𝑗=1

𝜙1 (u 𝑗 ) + 𝐼Ω1 (W) + 𝐼Ω2 (t)

s.t. M = Xdiag(s), u 𝑗 = 𝜙2 (x 𝑗 ),W = X, t = s.

(7)



and the augmented Lagrangian is as follows:143

L(X, s,M,U,W, t,F) = 1
2
∥Y − AM∥2𝐹 + _

𝐿∑︁
𝑗=1

𝜙1 (u 𝑗 ) +
𝜌

2
∥Xdiag(s) −M + C∥2𝐹 −

𝜌

2
∥C∥2𝐹

+ 𝜌
2

𝐿∑︁
𝑗=1
∥𝜙2 (x 𝑗 ) − u 𝑗 + d 𝑗 ∥22 −

𝜌

2
∥d 𝑗 ∥22 +

𝜌

2
∥X −W + E∥2𝐹 −

𝜌

2
∥E∥2𝐹

+ 𝜌
2
∥s − t + g∥22 −

𝜌

2
∥g∥22,

(8)

where C, D = [d1, d2, . . . , d𝐿], E, g are dual variables and _, 𝜌 are positive parameters. Denote144

F = [C; D; E; diag(g)]. It’s worth noting that _ regulates the influence of the regularization term145

and significantly affects the unmixing results, whereas 𝜌 is a penalty parameter in the augmented146

Lagrangian function and only affects the convergence speed. Now, we present two types of147

regularizations for this unified framework (5).148

Explicit Regularization. We first adapt some explicit regularization in the model (5). In order149

to promote sparsity prior to the XANES images, 𝜙1 (·) is denoted by ∥ · ∥1. Here we consider150

the linear transformations 𝜙2 to project the image into another domain. Note that ∥𝜙2 (x 𝑗 )∥1151

becomes total variation [44] if we choose 𝜙2 (·) as a discrete gradient operator. We apply152

the alternating direction method of multipliers (ADMM) [45] to solve this model. All these153

variables are updated alternatively, and the sub-problems’ derivation has been included in the154

Supplement Material. Algorithm 1 summarizes the whole process for solving model (8) with155

explicit regularization. Moreover, we further the sequence generated by Algorithm 1, which has156

at least one accumulation point satisfying the Karush-Kuhn-Tucker (KKT) conditions [46] of (8)157

with explicit regularization. The proof can be found in Supplementary Material.158

Implicit Regularization. Designing an explicit regularizer can be challenging, as complex159

regularizers often complicate optimization problems, making the entire process more difficult.160

Rather than using a handcrafted regularizer, we aim to implicitly leverage prior knowledge about161

the spectral characteristics of materials in the scene to achieve better regularized unmixing results.162

In the implicit regularization, 𝜙1 (·) enforces prior knowledge of X, while 𝜙2 (·) represents identity163

transformation, i.e. 𝜙2 (x) = x. All these variables are updated sequentially, and the solution to164

the subproblem involving the variables X and U, which differs from the explicit regularization,165

is thoroughly elucidated in the Supplementary Material. In the case of the subproblem u 𝑗 , the166

u 𝑗 -subproblem is to solve a proximal operator as follows:167

u𝑘+1
𝑗 = arg min

u

𝜌

2
| |u 𝑗 − x𝑘+1

𝑗 − d𝑘
𝑗 | |2𝐹 + _𝜙1 (u 𝑗 ). (9)

We define 𝜎 =
√︁
_/𝜌, it is not difficult to show that (9) is168

u𝑘+1
𝑗 = arg min

u

1
2𝜎2 | |u 𝑗 − x𝑘+1

𝑗 − d𝑘
𝑗 | |2𝐹 + 𝜙1 (u 𝑗 ). (10)

Treating as x𝑘+1
𝑗
+ d𝑘

𝑗
as the “noisy” image, (10) minimizes the residue between x𝑘+1

𝑗
+ d𝑘

𝑗
and the169

“clean” image u 𝑗 using the prior 𝜙1 (u 𝑗 ), so (10) can be viewed as a standard image-denoising170

problem. We employ established and effective denoising operators in the PnP framework171

iterations, such as the conventional BM3D [47] or DnCNN [48], which utilizes deep learning.172

To adapt to the variation in noise during each iteration process. we increase 𝜌𝑘+1 = 𝛾𝑘𝜌
𝑘 for173

𝛾𝑘 ≥ 1, it has been used in various problem [49, 50]. Incorporating it into the (9), and define174

𝜎𝑘 =
√︁
_/𝜌𝑘 is a parameter controlling the strength of the denoiser. After acquiring the necessary175



denoising operators, we update the primal and dual variables in the ADMM process, following176

Algorithm 1.177

Algorithm 1: The Framework for TXM-XANES Image Unmixing with Explicit Regular-
izer and Implicit Regularizer (denoted as RUMex and RUMim, respectively).
Input: A TXM-XANES image Y, Dictionary A.
Output: Phase map X, Scaling factor s.

1: Initialize: X and s and choose parameter 𝜌, _ and 𝛾.
2: while not converged or iterations are not reached do
3: X is updated by

((M − C)diag(s) +
𝐿∑
𝑗=1
𝜙𝑇2 (u 𝑗 − d 𝑗 ) +W − E) (diag(s)2 − Δ + I)−1 for RUMex,

((M − C)diag(s) +
𝐿∑
𝑗=1
(u 𝑗 − d 𝑗 ) +W − E) (diag(s)2 + 2I)−1 for RUMim,

4: Normalize X such that 1𝑇X = 1,
5: s ← (X𝑇X + I)−1 (X𝑇 (M − C) + t − g),
6: M← (A𝑇A + 𝜌I)−1 (A𝑇Y + 𝜌Xdiag(s) + 𝜌C),

7: U ←
{

shrink(𝜙2 (x 𝑗 ) + d 𝑗 ,
_
𝜌
), for RUMex

Denoiser(x 𝑗 + d 𝑗 ,
_
𝜌
), for RUMim

8: 𝜌 ← 𝛾𝜌 for RUMim
9: W← max(X + E, 0),

10: t ← max(s + g, 0),
11: C ← C + Xdiag(s) −M,

12: d 𝑗 ←
{

d 𝑗 + 𝜙2 (x 𝑗 ) − u 𝑗 , for RUMex

d 𝑗 + x 𝑗 − u 𝑗 , for RUMim
13: E ← E + X −W,

14: g ← g + s − t.
15: end while

178

Remark 1 Dictionary selection: The proposed algorithm can quickly and accurately extract179

the spectral signal from the XANES imaging data. However, the reference spectra are a critical180

component for achieving optimal performance. When the reference spectra are unknown, we181

use the conventional spectra extraction method, which is the vertex component analysis (VCA)182

[51] as a baseline for dictionary identification. In the real data analysis in Section 3.3, we183

demonstrate that using VCA with denoising results in more accurate reference spectra extraction,184

particularly in strong-noise environments.185

3. Experiments and Results186

In this section, we will evaluate the performance of the proposed methods quantitatively and187

visually on both synthetic and actual datasets. Regarding the comparison with different priors,188

our methods are divided into two groups: the explicit regularization (RUMex denoted as total189

variation) and implicit regularization (RUMim denotes as PnP with BM3D [47]). More results on190

different regularizers and the algorithm behaviors can be found in the Supplementary Material.191

These proposed methods will be assessed compared to the traditional methods, namely Edge-50192

and LCF.193

3.1. Experimental Settings and Evaluation Metrics194

Data Description. The dataset presented in Fig. 2 comprises three X-ray projection images195

(Particles, Polymer, and Round) and three reconstructed slices (Wedge, Electrode, and Brine),196
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Fig. 2. Left: Typical examples of the test datasets: projections and reconstructed slices;
Right: Normalized spectra under different Ni valence states of X-ray XANES in a
battery cathode. State 1, 2, 3, 4, and 5 represent Ni’s different valence states.

which are utilized to create a simulation of 2D and 3D TXM-XANES imaging scenarios. To197

generate simulated movie data, as shown in Fig. 2, the reference spectra of different Ni valence198

states are randomly assigned to pixels in the images for various phase maps. The sample is199

assumed to contain various valence states of Ni elements, and the proportion of Ni elements200

satisfies the sum-to-one constraint. We describe the state using number (1, 2, 3, . . . , 𝐿).201

Evaluation Metrics. Each synthetic dataset frame is further corrupted with additive Gaussian202

noise with varying noise levels, with the standard deviation 𝜎 ∈ [1, 7]. For the performance203

assessment of the algorithms, we utilize two commonly used criteria to measure the accuracy of204

the phase map: the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM).205

PSNR is defined as follows:206

PSNR = 20 × log10
(
MAX/RMSE), (11)

where MAX is the maximum pixel value of the estimated image X̂ across all pixels, and RMSE207

is the root mean square error between X̂ and the ground truth X. The RMSE is defined as:208

RMSE =

√√
1

𝑛1𝑛2

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑙=1
∥𝑥(𝑖, 𝑙) − 𝑥(𝑖, 𝑙)∥2, (12)

where 𝑛1 and 𝑛2 are the number of rows and columns in the image X. We use the estimated phase209

map X̂ and the ground truth X to calculate PSNR. Then PSNR is calculated by the average of the210

PSNR of each chemical phase map.211

SSIM is a metric that quantifies the similarity between two images, which is calculated by the212

average of the SSIM of each chemical phase map. The SSIM formula is expressed as follows:213

SSIM(X̂,X) =
[(2`X̂`X + 𝑐1) ∗ (2𝜎X̂X + 𝑐2)]
[(`2

X̂
+ `2

X + 𝑐1) ∗ (𝜎2
X̂
+ 𝜎2

X + 𝑐2)]
, (13)

where `X̂ and `X represent the means of X̂ and X, respectively. 𝜎X̂ and 𝜎X denote the standard214

deviations of X̂ and X, respectively. 𝜎X̂X is the covariance of X̂ and X, while 𝑐1 and 𝑐2 are small215

constants added to prevent division by zero errors and stabilize the formula.216

3.2. Results of Synthetic Datasets217

Different Noise Levels. In this simulation scenario, we assume that each of the six simulated218

movie image datasets exclusively contains two Ni elements, namely, state 1 and state 2 under219
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Fig. 3. A visual comparison of the chemical phase map for various methods on the
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Note that the other chemical map is the reverse since 𝐿 = 2.

Table 1. Comparison of PSNR (dB) and SSIM in for six simulated datasets using
different approaches and noise levels (𝜎 is from 1 to 7).

Test set 𝜎

Edge-50 LCF RUMex RUMim

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Particle

1 8.98 0.10 16.11 0.57 38.22 0.94 42.65 0.98

3 5.96 0.08 9.33 0.28 32.64 0.87 37.36 0.96

5 5.73 0.07 6.80 0.22 29.59 0.76 34.39 0.93

7 5.71 0.07 5.26 0.20 27.63 0.69 31.39 0.87

Electrode

1 9.19 0.23 17.37 0.51 42.39 0.95 46.79 0.99

3 6.23 0.22 10.00 0.36 38.38 0.92 42.27 0.98

5 6.01 0.22 7.29 0.35 33.65 0.83 37.97 0.95

7 5.97 0.21 6.03 0.36 31.51 0.78 35.21 0.92

Polymer

1 11.20 0.23 19.94 0.59 42.36 0.95 47.10 0.99

3 6.56 0.22 11.86 0.39 37.85 0.89 42.74 0.98

5 6.07 0.21 8.94 0.35 32.44 0.75 38.53 0.94

7 5.97 0.21 7.27 0.35 30.00 0.68 34.29 0.86

Wedge

1 10.04 0.23 19.23 0.56 47.26 0.99 51.01 1.00

3 6.58 0.21 10.97 0.35 38.98 0.93 43.35 0.99

5 6.23 0.21 8.15 0.34 33.65 0.83 38.14 0.95

7 6.13 0.21 6.88 0.32 31.41 0.76 34.86 0.89

Round

1 7.06 0.04 12.17 0.50 35.28 0.92 39.58 0.97

3 4.89 0.01 6.81 0.28 28.53 0.80 34.14 0.94

5 4.66 0.01 5.06 0.22 26.35 0.70 30.78 0.88

7 4.63 0.01 3.95 0.19 24.43 0.63 28.19 0.80

Brine

1 10.46 0.03 19.86 0.52 40.34 0.92 45.40 0.97

3 4.96 0.01 10.54 0.24 35.59 0.83 39.85 0.94

5 4.59 0.01 7.08 0.18 30.90 0.66 37.01 0.91

7 4.55 0.01 5.17 0.17 28.52 0.56 33.00 0.80



different noise levels. This configuration results in a dictionary composed of two reference220

spectra. Consequently, the generated chemical maps illustrate the relative proportions of states221

1 and 2, within the chemical material. To enhance clarity, when presenting these phase maps,222

each map distinctly portrays the proportion of one Ni element. This approach aligns with the223

constraint that the Ni element proportions collectively sum to one. In the case where 𝐿 = 2,224

the second phase map showcases the inverse proportions of the elements. Table 1 displays the225

performance of both traditional methods and our proposed unmixing methods incorporating226

explicit and implicit regularizers with two reference spectra. The optimal results are highlighted227

in bold font. Overall, both of our methods outperform traditional techniques across all datasets.228

We observed approximately two times improvement in terms of PSNR compared to Edge-50, and229

about one time improvement compared to LCF. Our models exhibit remarkable robustness to230

a wide range of noise levels, particularly when the noise is substantial, as the chemical map is231

still reconstructed effectively. RUMim improves RUMex by up to 2 dB in terms of PSNR and 0.1232

in terms of SSIM under all noise conditions. However, the computational cost is much heavier233

than RUMex; See Supplementary Material. In Fig. 3, we compare the chemical phase maps234

of Round data obtained from various approaches under two kinds of noise levels. Except for235

Edge-50, we observe that the estimated phase maps are consistent with the ground truth (GT).236

However, under strong noise, our proposed methods yield less noisy phase maps closer to GT and237

preserve the image details. The Edge-50 and LCF methods are pixel-based and do not consider238

the spatial-spectral correlations in XANES images. Our proposed RUMex method employs fixed239

regularizers and lacks flexibility, while the PnP framework models priors using denoiser, thus240

eliminating the need for handcrafted regularizers.

Table 2. Comparison of PSNR (dB) and SSIM using different approaches with varying
numbers of the reference spectra (the noise level 𝜎 is set as 3).

Test set 𝐿

LCF RUMex RUMim

PSNR SSIM PSNR SSIM PSNR SSIM

Particle
3 13.46 0.52 22.56 0.80 22.64 0.92

4 13.36 0.48 20.32 0.73 21.23 0.85

5 13.72 0.48 21.31 0.76 19.45 0.89

Wedge
3 11.47 0.27 24.55 0.74 26.23 0.92

4 10.66 0.24 18.05 0.61 19.34 0.75

5 12.62 0.25 19.26 0.66 20.13 0.80

241

Number of Reference Spectra. To evaluate the capability of unmixing multiple spectra for242

XANES data, we generated two datasets at reference spectra (𝐿 = 3, 4, 5) when 𝜎 = 3. Here,243

different reference spectra represent different valence states of Ni, the phase map represents the244

proportions of different Ni valence states within the chemical material. The results of PSNRs245

and SSIMs are presented in Table 2, demonstrating our proposed framework’s robustness and246

superiority. Note that RUMim outperforms RUMex in most of the cases but the gap becomes247

smaller when there are more reference spectra. Additionally, Fig. 4 displays the phase maps of248

three reference spectra (Ni valence state 1, 2, 3, respectively.) using Wedge data, the three-phase249

maps respectively represent the proportions of state 1, 2, 3 within the Wedge, indicating that our250

phase maps are closer to GT. Furthermore, Fig. 5 shows the result with the number of reference251

spectra being 5 (Ni valence state 1, 2, 3, 4, 5, respectively), the five-phase maps respectively252

represent the proportions of state 1, 2, 3, 4 and 5 within the Particle. The phase maps with Particle253

data for Ni valence states 1, 2, and 5 obtained RUM method exhibit clearer structural details.254
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Fig. 4. The visual comparison for the chemical phase maps of the various methods on
Wedge data under three reference spectra (𝜎 = 3). From top to bottom: Ni valence
state 1, 2, 3, respectively.

However, the structure of the phase map for Ni valence states 3 and 4 is unclear, suggesting a255

strong correlation between its reference spectra, and strongly correlated spectra may provide256

similar information, making it difficult to accurately distinguish between different components.257

Nevertheless, RUMim still outperforms other methods in unmixing multiple spectra.258

The algorithm 1 framework is based on ADMM which decouples the forward model and259

the prior model terms in the optimization procedure. Mathematically, implicit regularization260

is designed to impose smoothness in the solution by penalizing the rate of change. In contrast,261

explicit regularization directly constrains the solution space, potentially leading to a more262

restrictive optimization landscape and may not accommodate the complexities of real-world data263

as effectively.264

3.3. Results of Real Dataset265

We apply the proposed RUMex and RUMim methods to unmix real TXM-XANES data. The266

data comprises an image of numerous Nickel-Cobalt-Manganese (NCM) particles on a charged267

cathode, as shown on the left in Fig. 6. NCM particles were collected from 8180 eV to 8562268

eV with varying energy intervals across the Ni K-edge, with spectral sampling of 0.5 eV in the269

immediate edge region. The zone plate was adjusted to maintain focus. NCM particles were270

recorded at each energy within 0.5 seconds of the sample image to account for changes in flux271

and small beam instabilities. The (fully automated) two-dimensional XANES measurement272

of a single field of view (FOV) can be accomplished within several minutes. Further time273

reduction can be achieved by limiting the number of energy points to the minimum necessary274

to discriminate different chemical phases, which, in turn, requires a priori knowledge of the275

chemical phases present in the sample. The two chemical phases present (different Ni states)276

were fit to XANES spectra of pure Ni.277

The NCM particle data exhibits an extremely low signal-to-noise ratio, making it challenging278

to discern the reference spectra of Ni elements in the range of 8180 eV to 8562 eV under279
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practical conditions. Consequently, we can only determine that it contains Ni at different internal280

states, similar to the blind unmixing. In order to tackle this challenge, we applied a denoising281

algorithm [16] to improve the projection images’ signal-to-noise ratio (SNR). Following that,282

we employed the VCA algorithm [51] for dictionary extraction. Figure 6 on the right-hand side283

illustrates the two reference spectra for the two Ni states extracted by VCA [51] within the range284

of 8180 eV to 8562 eV. Despite the presence of noise in these extracted reference spectra, our285

method showcases resilience when working with noisy data. These techniques allowed us to286

overcome the low SNR and extract valuable information from the NCM particle data.287

As shown in Fig. 7, the presented RUM algorithm adeptly discerns the relative proportions288

of the two Ni elements within the NCM particle structure. In real-world applications, it is289

customary to employ a linear transformation on the chemical maps that depict the proportions290

of these Ni elements. This transformation is guided by the absorption edge energies linked to291

the two reference spectra. The detailed chemical phase map is available in the Supplementary292

Material. Note that RUMex has some theoretical guarantee on the convergence while the RUMim293

shows better unmixing results in the synthetic experiments. On the other hand, due to the high294

noise levels in each projection image of NCM particles, the chemical phase map obtained using295

Edge-50 and LCF fails to provide any meaningful information. Our methods simultaneously296

unmix and denoise the chemical imaging data, avoiding the accumulated error if we split these297

two processes. Additionally, the chemical phase map of NCM particles indicates an uneven298

reaction of the battery electrode, with some particles exhibiting a higher Ni valence state and299

others showing a lower Ni valence state. A major reason is that during the charge and discharge300

cycles of the battery, nickel ions undergo redox reactions and change between different Ni valence301

states [52, 53]. The utilization of the RUM unmixing method opens up avenues for enhanced302

understanding of spatiotemporally electrochemical reactions, enabling more profound insights303

and facilitating the optimization of composite electrode designs.304

4. Conclusion305

This paper introduced a robust spectra unmixing framework to extract the chemical phase306

map signal for the widely-used X-ray imaging technique. Our proposed framework considered307

variance in spectra and maximized the use of spatial-spectral priors in X-ray microspectroscopy.308

It outperforms traditional methods significantly when dealing with strong noise and spectral309

variability. Experimental results showcase substantial improvements when compared to traditional310

methods, with enhancements of up to 151.84% in PSNR and 136.33% in SSIM in simulated311

datasets. Additionally, the framework exhibits favorable convergence properties for the explicit312

regularization, while the implicit regularization performs better. Our future research involves313

extending the applicability of our model to scenarios with Poisson noise and practical applications314

where there is a strong correlation among reference spectral signatures. Another direction for315

our future work is to develop deep learning approaches by adapting the techniques in the 3D316



chemical imaging reconstruction [54, 55]. Moreover, the denoising operator utilized in our317

proposed method is not limited to DnCNN. We have the flexibility to leverage more advanced318

denoising neural networks, including FFDNet [56] and Swin-transformer [57], to further elevate319

the unmixing performance for X-ray microspectroscopy.320
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